Fractals via Controlled Fisher Iterated Function System
نویسندگان
چکیده
This paper explores the generalization of fixed-point theorem for Fisher contraction on controlled metric space. The space and contractions are playing a very crucial role in this research. is used to generate new type fractal set called fractals (CF-Fractals) by constructing system named iterated function (CF-IFS). Furthermore, interesting results consequences demonstrated. In addition, collage established as well. newly developing IFS can provide novel directions theory.
منابع مشابه
Creating Fractals using Iterated Function Systems
Suppose you had no ideas what fractals were, and you were asked to model objects like clouds, grass, plants, etc.. What else could you use to define the geometries of these objects? Although polynomials can easily define objects with smooth geometry, they are pretty useless if you want to model complex objects like grass or plants, since those possess infinitely non smooth, highly structured ge...
متن کاملFractals as Fixed Points of Iterated Function Systems
This paper discusses one method of producing fractals, namely that of iterated function systems. We first establish the tools of Hausdorff measure and Hausdorff dimension to analyze fractals, as well as some concepts in the theory of metric spaces. The latter allows us to prove the existence and uniqueness of fractals as fixed points of iterated function systems. We discuss the connection betwe...
متن کاملBoundary Controlled Iterated Function Systems
Boundary Controlled Iterated Function Systems is a new layer of control over traditional (linear) IFS, allowing creation of a wide variety of shapes. In this work, we demonstrate how subdivision schemes may be generated by means of Boundary Controlled Iterated Function Systems, as well as how we may go beyond the traditional subdivision schemes to create free-form fractal shapes. BC-IFS is a po...
متن کاملChaotic property for non-autonomous iterated function system
In this paper, the new concept of non-autonomous iterated function system is introduced and also shown that non-autonomous iterated function system IFS(f_(1,∞)^0,f_(1,∞)^1) is topologically transitive for the metric space of X whenever the system has average shadowing property and its minimal points on X are dense. Moreover, such a system is topologically transitive, whenever, there is a point ...
متن کاملGeometric Modelling of General Sierpinski Fractals using iterated function system in Matlab
Study on properties of general Sierpinski fractals, including dimension, measure, Lipschitz equivalence, etc is very interesting. Like other fractals, general Sierpinski fractals are so complicated and irregular that it is hopeless to model them by simply using classical geometry objects. In [22], the authors the geometric modelling of a class of general Sierpinski fractals and their geometric ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fractal and fractional
سال: 2022
ISSN: ['2504-3110']
DOI: https://doi.org/10.3390/fractalfract6120746